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evolution equations: I. The Burgers equations 
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Belgium 
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Abstract. The eigenfunction method introduced by Van Kampen to solve a Fokker-Planck 
equation is extended and applied to a related partial differential equation. From this 
analysis we are able to obtain the solution of the Burgers and the damped Burgers equation 
in a systematic way. 

1. Introduction 

In the last decade, different methods have become available for solving nonlinear wave 
equations. Among these are the powerful inverse scattering technique (IST) (Gardner et 
a1 1974) and the Hirota (1976) method which is based on the theory of Pad6 
approximations. These methods give very good results, and even complicated 
nonlinear equations can be solved using them. 

Nevertheless, we intend to introduce another method, because we feel that a more 
systematic approach is needed. For example, the Schrodinger equation which appears 
in the IST method for the solution of the KDV equation seems somewhat ‘pulled from the 
air’ (Scott et a1 1973). Furthermore, Hirota’s method is based on a trial solution in the 
form of the ratio of two functions, which was a useful hypothesis. The reason that one 
has to make some kind of a guess to start with is clear: we are dealing with nonlinear 
equations and every effort to classify them fails as yet. 

In this article we propose an attempt at a better starting point for some evolution 
equations. 

We shall deal now with the Burgers equation; the Korteweg-de Vries equation will 
be studied in a subsequent paper. 

2. The eigenfunction method of Van Kampen 

Recently, Van Kampen (1977) found an explicit solution of the one-dimensional 
Fokker-Planck equation 

aP d 2 U  d U d P  a2P 
at dx dx ax ax 
- 2 P + - - + u y  ( U  = constant) 

which originates from a stochastic description of a bistable system. The quantity P(x, t )  
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in this context is associated with a probability function, while U ( x )  represents a (not 
explicitly known) potential function with two minima. 

The scheme of this method can be summarised as follows. Firstly, a time factor e-Ar 
is split off. The remaining eigenvalue equation then reads 

d2P d U d P  d 2 U  
dx dx dx (dx  ) v y + - - +  -+A P=O, 

where P is now only a function of x. 
Secondly, if one substitutes 

equation (2) can be reduced to the canonical form 

Then one defines a function V(x) 

(C = constant) 

such that equation (4) reduces to a Schrodinger equation: 

d2r$/dX2 +[E - V ( X ) ] ~  = 0. (6) 

Further, the RHS of equation ( 5 )  resembles a Riccati equation which can be transformed 
by the usual substitution 

U = -2v 1 n Z  or 2 = exp(-U/2v). (7) 

d2Z/dX2 + [C - V(X)]Z = 0, (8) 

The result reads 

which again represents a Schrodinger equation with the same potential! 
Finally, the quantity P we are looking for can then be written as a product of the 

eigenfunctions 4 and 2. 
The features of this method can be summarised as follows. If U(x) is explicitly 

known, the problem is reduced to the Schrodinger equation (4). If only the form or an 
expression for U(x)  is known (as in Van Kampen's case), one can look for a positive 
eigenfunction Z in order to find a suitable form for V(x) and hence U ( x ) .  

This second feature will be very important for our following analysis. 

3. Extension of the method 

We intend to investigate the equation 

aP a2u auap a2p -=a(Y--Tp+p-- - + v y ,  
a t  ax ax ax ax (9) 

where a and p are parameters and U is an arbitrary function of x and t. 
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This equation is closely related to our starting differential equation (1). An extra 
freedom, however, is that U(x, t )  may be time dependent. Nevertheless we shall make 
use of the preceding analysis. 

Due to the time-dependent character of U we cannot split off a time factor. 
Therefore we immediately substitute 

Hence equation (9) is written as 

a4 a24 p4[au ( p - 2 a )  a2u p au 
-= v,+- --v 
at ax 2~ at p ax2 2 ax 

- - -( -) 2]. 

The Riccati-like expression on the RHS of this equation appears again, and 
consequently we are able to linearise it by the usual substitution 

U(x, t )  = 2va In Z or Z = exp[ U(x, t ) / 2 v a ]  (12) 

a = (p  -2a) /pZ.  

with 

This choice for the parameter a enables us to cancel the nonlinear term 
-( /3/2)(aU/a~)~.  Then we arrive at 

This equation can be readily solved by taking 

azlat  = U ~ U  a2z/ax2 + cz (14a) 

(146) 

where C is an arbitrary function of x and t. Both the quantities 4 and Z obey the same 
type of equation. For C = 0 the familiar thermal conductivity equation is obtained. 

We remark that the function C(x, t )  here plays the same role as the potential 
function V ( x )  in 0 2. 

Special cases of this solution are the following. 

and 

a4/at = v a24/ax2 -+ paC4, 

(1) a = p  = 1, a = -1. 
We have 

Z = exp(-U/2v), 

ad/at = U a24/aX2 - c4. 

P = 4z, az/at = -U a2z/ax2+ cz 
and 

(15) 
The solution for P can thus be written as a product of two functions. This example just 
generalises van Kampen’s treatment. 

Then 
(2) a=o ,p=1 ,a=1 .  

Z = exp( U/2v) and P = 412 

az/at  = v a2z /ax2  + cz 
with 
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and 
a4/at = Y a24/ax2 + c4. (16) 

We now have to deal with the ratio of two functions which are related because they obey 
the same equation. Note that one has to exclude p = 2 a  because the expression (12) 
becomes meaningless. 

In conclusion, a solution of equation (9) can be found if we take a function U which 
obeys the Riccati-like equation 

Then equation (11) can be separated into two equations and the corresponding 
solutions can be determined. 

4. Burgers' equation 

This well known equation, first introduced by Burgers (1948), serves as a useful 
mathematical and physical model in fluid mechanics. Moreover it represents the 
simplest nonlinear wave equation: 

aP aP a2p - = -P-+ U T .  
at ax ax 

The solution of this equation, proposed by Cole and Hopf, is remarkable (Karpman 
1975). By means of the transformation 

a*/ a 
ax ax 

P = -2v- In 4 = - 2 ~ -  $, 

they obtained for $ a closed linear analytical form: 

a*/at  = v i i2*/ax2. (20) 
The key to that transformation seems to be a guess or just a coincidence. 

Let us now examine this nonlinear equation by the present method, A connection 
between equation (9) and equation (18) is easily found if we postulate the relations 

a u / a x  = -P (21a) 

a + p  = 1. 

and 

As mentioned before, we are able to use our solution method only for those functions U 
which obey equation (17). Such an equation is available. Indeed, from equation (21a) 
we observe that -aU/ax has to satisfy Burgers' equation. This gives 

-[----(-) a au 1 au -vz]=O a2u 
ax at 2 ax 

or 

au 1 au a2u 
a t  2 ax 
---(-) - v---y= ax c ' ( t ) .  
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Equation (17) is similar to equation (22b) if we choose 

(Y =o ,  p = 1  (hence a = 1) ( 2 3 a )  

and 

c = C’(t)/2U = c ( t )  

except for the fact that now C may be only time-dependent. 

section. In that case (see equations (16)) we had 
Our problem now corresponds to the second example we treated in the previous 

and because also 

we arrive immediately at 

4 = - 2 ~  azlax.  (26) 

In view of the equations (16) and the fact that we deal with just one unknown variable, 
this relationship between q5 and Z had to exist. Hence, equation (25) is a solution of 
Burgers’ equation provided that 2 satisfies the linear differential equation 

az la t  = U a2z /ax2  + c ( t p .  (27) 

Note that equation (24) corresponds to the starting hypothesis of Hirota (1976) and 
that equation (25) is nothing but the Hopf-Cole transformation (see equation (19)). 

We notice further that equation (27) is more general than originally stated. Hirota 
(1976) has already pointed out that a term A$ (A an arbitrary constant) has to be added 
to the equation of thermal conductivity (20). 

5. The damped Burgers equation 

The damped Burgers equation is just a simple extension of equation (18): 

aP aP a’p -+ yP = -P-+ U-. 
at ax ax 

The constant y(>O) represents a damping rate. 

suitable form 
According to the previous analysis, equation (28) is transformed into the more 

aP auap  a2p - i - y P = - - + v y  
at ax ax ax 

au /ax  = -P. 

and 

The usual substitution P = exp(--U/2u)q5 leads us to 

au 1 au 
at ax2 2v at 2 ax 
-+ a4 y4 = v-+-q$ a24 [ ( - ) 
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Substitution of the condition (30), i.e. P = -aU/dx, into equation (28) gives 

- + y u - -  - - v ~ = @ ’ ( t ) ,  
au 
at 2 ax 1(au)2 :: 

where C’(t)  is an arbitrary function of time. Hence equation (31) becomes 

Referring to the previous sections, we define 

U = 2v In Z. 

Consequently the relation 

4 = -2v az/ax 

is found again. 
With the aid of these relations a closed expression for the function Z is discovered. 

Indeed, equation (33) is written as 

a a2z a 2  
ax a rz at 2v ) ax ax ax 
- - + y Z - - 2  -v--=-ylnZ- 

or 

- -+ y Z  In Z + Co(t)Z 
ax a rz at 

(37) 

with Co(t) = -C1(t)/2v. 
The final equation for Z is 

az/at  + YZ In z = Y a2z/ax2 - co(t)z, (38) 

if the expression between brackets of equation (37) vanishes as 1x1 + 00. Thus with the 
aid of 

P = -(2 V / Z )  az/ax (39) 

the damped Burgers equation (28) is reduced to equation (38). Apart from the last 
term, equation (38) is similar to the solution suggested by Leibovich and Seebass 
(1974). 

6. Conclusion 

Firstly, we have extended the eigenfunction method of Van Kampen to a more general 
case. Then we were able to apply this analysis to the Burgers and damped Burgers 
equations in order to obtain the respective solutions in a systematic way. 

These solutions are more general than those previously obtained. The ansatz used 
by Hirota appears as a logical consequence of our theory, and moreover we rediscover 
the Cole-Hopf transformation. 
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